Abstract
ABSTRACTThe Daolundaba Cu–polymetallic deposit is a newly discovered Cu–W–Sn deposit on the western slopes of the southern Great Xing’an Range, and its mineralization was related to an early Permian coarse-grained biotite granite. However, there is little information on the age of formation of the deposit. In this article, we present the results of our investigation into the age of the Daolundaba Cu–polymetallic deposit, which involved the selection of chalcopyrite and pyrrhotite samples for Rb–Sr isochron dating. A Rb–Sr isochron defined by the chalcopyrite samples yielded a Rb–Sr isochron age of 290.0 ± 11 Ma (MSWD = 1.2) with an initial Sr isotopic composition (ISr) of 0.71446. The pyrrhotite samples yielded a Rb–Sr isochron age of 283.0 ± 2.6 Ma (MSWD = 1.16) with an initial Sr isotopic composition (ISr) of 0.71447. The Rb–Sr isochron age determined from the chalcopyrite and pyrrhotite is 282.7 ± 1.7 Ma (MSWD = 1.13). These results indicate that the Daolundaba Cu–polymetallic deposit formed during the early Permian (282.7–290.0 Ma). The Rb and Sr contents of the chalcopyrite and pyrrhotite range from ~0.1325 to ~3.6810 ppm and from ~0.1219 to ~9.5740 ppm, respectively, and the initial Sr isotope ratios (ISr) range from 0.71047 to 0.71869, with an average of 0.714723. These isotopic characteristics indicate the ore-forming minerals of the Daolundaba Cu–polymetallic deposit originated mainly from the crust, but with small amounts of mantle material involved. The copper was derived from the associated magma whereas the W and Sn was derived from the surrounding strata. The Permian mineralization of the Xing’an–Mongolia region occurred in an active continental margin setting during subduction of the Palaeo-Asian oceanic plate beneath the Siberian Plate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.