Abstract

AbstractEarly Permian (272 ± 2 Ma) diabase dikes from the Linxi area in central Inner Mongolia of NE China have high MgO (10.4 – 12.3 wt%), Cr (301 – 448 ppm) and Ni (167 – 233 ppm) concentrations, and show enrichments in large ion lithophile element (LILE) and light rare earth elements (REE) but depletions in high field strength element (HFSE, e.g., Nb and Ta), with depleted mantle‐type Sr [87Sr/86Sr (i) = 0.70315 – 0.70362], Nd [εNd (t) = +6.8 – +7.4], Pb [206Pb/204Pb (i) = 18.10 – 18.16] and zircon Hf [εHf (t) = +14.7 – +19.1] isotopic compositions, but slightly higher zircon δ18O (5.2 – 6.0 ‰ with an average of 5.7 ‰) than normal mantle. The combined geochemical data indicate their derivation from a depleted mantle metasomatized by recycled crustal component. Elemental and isotopic modeling results suggest that the primary magma was produced through 5 % to 10 % melting of a depleted mantle, which contained approximately 1 % sediment fluid released from the subducted paleo‐Asian Ocean. Considering the widespread distribution of contemporaneous mafic rocks across the central Inner Mongolia, which show REE patterns from E‐MORBs to normal MORBs, we propose a petrogenetic link between the Early Permian mafic magmatism and a back‐arc extension in response to northward subduction of the paleo‐Asian Ocean. The Permian mafic magmatism and the new age constraints from the metamorphic and sedimentary records in this area tend to indicate the ultimate closure of the paleo‐Asian Ocean by the end of Paleozoic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call