Abstract

Diphenylmethane diisocyanate (MDI) is a sensitizing chemical that can cause allergic contact dermatitis and asthma. Protective gloves and clothing are necessary to prevent skin exposure. Breakthrough times are used for the selection of chemical protective gloves and clothing. In the EN 374-3:2003 European standard, breakthrough time is defined as the time in which the permeation reaches the rate of 1.0 µg min(-1) cm(-2) through the material. Such breakthrough times do not necessarily represent safe limits for sensitizing chemicals. We studied the permeation of 4,4'-MDI through eight glove materials and one clothing material. The test method was derived from the EN 374-3 and ASTM F 739 standards. All measured permeation rates were below 0.1 µg min(-1) cm(-2), and thus, the breakthrough times for all the tested materials were over 480min, when the definitions of EN 374-3 and ASTM F 739 for the breakthrough time were used. Based on the sensitizing capacity of MDI, we concluded that a cumulative permeation of 1.0 µg cm(-2) should be used as the end point of the breakthrough time determination for materials used for protection against direct contact with MDI. Using this criterion for the breakthrough time, seven tested materials were permeated in <480min (range: 23-406min). Affordable chemical protective glove materials that had a breakthrough time of over 75min were natural rubber, thick polyvinylchloride, neoprene-natural rubber, and thin and thick nitrile rubber. We suggest that the current definitions of breakthrough times in the standard requirements for protective materials should be critically evaluated as regards MDI and other sensitizing chemicals, or chemicals highly toxic via the skin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call