Abstract
The physical parameters of the xylene isomers (the positional isomers o-, m-, and p-xylenes and the skeletal isomer ethyl benzene) responsible for the differing permeation behavior of the isomers through lined unsupported 0.41 mm thick nitrile glove material were investigated. An ASTM type permeation cell at 30°C, constant mixing conditions, hexane liquid collection, and capillary column gas chromatography/mass spectrometry of samples taken from the collection side every ten minutes allowed break through times tb and steady-state sections to be defined. While pure isomers had distinct break through times tb(m-xylene = p-xylene < ethyl benzene = o-xylene), steady-state permeation rates Ps(p-xylene > m-xylene > ethyl benzene = o-xylene), lag times tl(m-xylene < p-xylene = ethyl benzene < o-xylene), and diffusion coefficients Dp(m-xylene < p-xylene = ethyl benzene < o-xylene), such behavior was lost in a equal volume mixture (tb, tl, Ps, and Dp were equivalent). The average Ps of the mixture isomers of equal volumes did not differ from that expected from the individual pure isomer Ps values. The results for the pure isomers were attributed to o-xylene and ethyl benzene being similarly sterically hindered, the p-xylene being the flattest and most symmetrical molecule and having no dipole moment, and m-xylene being intermediate in steric structure. The pure isomer tl were directly related to viscosity divided by the log octanol-water coefficient, while their log Ps was inversely related to dipole moment times the logarithm of the capacity factor for water for a reversed-phase high-performance liquid chromatography column. In an equivolume mixture of the isomers, isomer interactions caused equivalence for all permeation kinetic parameters, indicating that the kinetics of mixture constituents is not predictable from the behavior of the pure constituents, although mass transfer appears additive. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1713–1721, 1997
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.