Abstract

The diffusion and permeation properties of liquid water through different polar and nonpolar polymers and copolymers were studied with a highly sensitive permeameter. The transient permeation fluxes through the polar polymer films could be fitted well only with an exponential equation for the diffusivity concentration dependence; this empirical exponential equation represented the diffusion plasticization effect of water on the materials. For the hydrophobic polyolefins, this exponential equation was no longer valid, and another form of the equation was empirically found to account for the reduction of the water diffusivity with the extent of the permeation. Such a negative plasticization effect might be attributed to the formation of water clusters in the polyolefins. The values of the diffusion coefficient of water in the dry polar polymers were smaller than those in dry polyolefins, but the opposite behavior was found for the permeability because it was much more favorable for water sorption in the polar polymers than in the hydrophobic polyolefins. For the ethylene–vinylacetate copolymers, the plasticization effect of water on its own diffusion was negative for the sample with a low vinyl acetate (VA) content; it became nil at 19 wt % VA and positive at higher VA contents. This increase in the extent of the water sorption with the increase in the VA content led to a steady increase in the water permeability in the poly(ethylene-co-vinylacetate) copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1998–2008, 2000

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call