Abstract

We examined the concentration dependence of currents through CaV3.1 T-type calcium channels, varying Ca2+ and Ba2+ over a wide concentration range (100 nM to 110 mM) while recording whole-cell currents over a wide voltage range from channels stably expressed in HEK 293 cells. To isolate effects on permeation, instantaneous current–voltage relationships (IIV) were obtained following strong, brief depolarizations to activate channels with minimal inactivation. Reversal potentials were described by PCa/PNa = 87 and PCa/PBa = 2, based on Goldman-Hodgkin-Katz theory. However, analysis of chord conductances found that apparent Kd values were similar for Ca2+ and Ba2+, both for block of currents carried by Na+ (3 μM for Ca2+ vs. 4 μM for Ba2+, at −30 mV; weaker at more positive or negative voltages) and for permeation (3.3 mM for Ca2+ vs. 2.5 mM for Ba2+; nearly voltage independent). Block by 3–10 μM Ca2+ was time dependent, described by bimolecular kinetics with binding at ∼3 × 108 M−1s−1 and voltage-dependent exit. Ca2+o, Ba2+o, and Mg2+o also affected channel gating, primarily by shifting channel activation, consistent with screening a surface charge of 1 e− per 98 Å2 from Gouy-Chapman theory. Additionally, inward currents inactivated ∼35% faster in Ba2+o (vs. Ca2+o or Na+o). The accelerated inactivation in Ba2+o correlated with the transition from Na+ to Ba2+ permeation, suggesting that Ba2+o speeds inactivation by occupying the pore. We conclude that the selectivity of the “surface charge” among divalent cations differs between calcium channel families, implying that the surface charge is channel specific. Voltage strongly affects the concentration dependence of block, but not of permeation, for Ca2+ or Ba2+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call