Abstract
The threat posed by biological and chemical warfare agents (BCWA) to national security, the environment, and personal health underscores the need for innovative chemical protective clothing. To address the limitations of conventional activated carbon materials, which are prone to falling off and adsorption saturation, an efficient self-association approach was introduced. In this study, we proposed the immobilization of metal-organic framework (MOF) 808 and Ag nanoparticles onto a polypropylene (PP) fiber membrane using a rapid self-association method facilitated by chitosan (CS). The MOF 808/Ag-based (PP-CS/808-Ag) fiber membrane demonstrated exceptional degradation efficiency, achieving a remarkable rate of t1/2 within 2 h for the mustard simulant 2-chloroethyl ethyl sulfide (2-CEES) and a rate of t1/2 = 4.12 min for the G-series simulant dimethyl 4-nitrophenylphosphate (DMNP). A theoretical computational model was developed to determine the overall reaction mechanism, and it was verified that MOF 808 and Ag nanoparticles were mainly involved in the hydrolysis process against 2-CEES and DMNP. The PP-CS/808-Ag composite fiber film was prepared as the core layer, and the fracture strength, bending resistance, and moisture permeability were better than those specified by many countries for biochemical protective clothing, showing that it has a broad application prospect in developing a generation of broad-spectrum bioprotective clothing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.