Abstract

Immunofluorescence staining is a crucial tool for studying the structure and behavior of intracellular proteins and organelles. During the staining process, the permeabilization treatment is usually required to enhance the penetration of a fluorescent antibody into the cells. However, since most of the membrane imaging dyes as well as the membrane lipids will detach from the cell surface after permeabilization, membrane labeling using these dyes is not compatible with immunofluorescence staining. Herein, by linking cholesterol-polyethylene glycol (PEG-Chol) and fluorescein isothiocyanate (FITC) with the amine-rich glycol chitosan (GC), we prepared a multifunctional polymeric construct, GC-PEG Chol-FITC, and realized permeabilization-tolerant plasma membrane imaging. Owing to the presence of abundant amine groups in the labeling reagent and the membrane proteins/lipids, the addition of paraformaldehyde in the fixation step induces the amine-cross-linking between the labeling reagents and the membrane proteins/lipids, thus preventing the detachment of fluorophores from the cell surface after permeabilization. Besides, the large molecular weight effect of the imaging reagent may also account for its antipermeabilization property. Furthermore, by combining immunofluorescence staining with the plasma membrane labeling by GC-PEG Chol-FITC, we simultaneously imaged the plasma membrane and cytoskeletons, and clearly observed metaphase cells and binucleated cells. The concept of using amine-rich polymeric dyes for plasma membrane imaging will inspire the development of more permeabilization-resistant membrane labeling dyes with better performance, which can realize simultaneous membrane and intracellular protein imaging and facilitate the future studies of membrane-intracellular protein interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call