Abstract

AbstractWe studied the relation between rupture and changes in permeability within a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). A series of water injection experiments were performed in a borehole straddle interval set within the damage zone of the main fault. A three‐component displacement sensor allowed an estimation of the displacement of a minor fault plane reactivated during a succession of step rate pressure tests. The experiment reveals that the fault hydromechanical (HM) behavior is different from one test to the other with varying pressure levels needed to trigger rupture and different slip behavior under similar pressure conditions. Numerical simulations were performed to better understand the reason for such different behavior and to investigate the relation between rupture nucleation, permeability change, pressure diffusion, and rupture propagation. Our main findings are as follows: (i) a rate frictional law and a rate‐and‐state permeability law can reproduce the first test, but it appears that the rate constitutive parameters must be pressure dependent to reproduce the complex HM behavior observed during the successive injection tests; (ii) almost similar ruptures can create or destroy the fluid diffusion pathways; (iii) a too high or too low diffusivity created by the main rupture prevents secondary rupture events from occurring whereas “intermediate” diffusivity favors the nucleation of a secondary rupture associated with the fluid diffusion. However, because rupture may in certain cases destroy permeability, this succession of ruptures may not necessarily create a continuous hydraulic pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.