Abstract
The membrane of spinach leaf peroxisomes contains an anion-selective channel. Reconstitution experiments were performed with lipid bilayer membranes to study its permeability properties. A variety of different monovalent inorganic and organic anions were found to be permeable through the porin channel. Its single-channel conductance for these different ions suggested that the channel has a minimum diameter of about 0.6 nm. From selectivity measurement in KCl solution a ratio of the anion permeability to cation permeability of less than 0.04 was determined, indicating an almost ideal selectivity of the peroxisomal channel for chloride. The permeation of chloride through the peroxisomal channel could be blocked efficiently by the addition of increasing concentrations of organic anions to the aqueous phase. The results are consistent with a binding site for dicarboxylic anions inside the peroxisomal channel. A particular high stability constant for the binding was obtained for peroxisomal metabolites such as malate, oxaloacetate, succinate, and 2-oxoglutarate, which have to cross the membrane of plant peroxisomes in vivo. Among these solutes maximal binding affinity was determined for C4 dicarboxylic anions. The results indicate that the peroxisomal channel does not form a general diffusion pore similarly to known eukaryotic porins, but has specific properties comparable to specific and inducible porins, which have been characterized in some gram-negative bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.