Abstract
This paper shows how fuzzy rule‐based systems help predict permeability in sedimentary rocks using well‐log responses. The fuzzy rule‐based approach represents a global nonlinear relationship between permeability and a set of input log responses as a smooth concatenation of a finite family of flexible local submodels. The fuzzy inference rules expressing the local input‐output relationships are obtained automatically from a set of observed measurements using a fuzzy clustering algorithm. This approach simplifies the process of constructing fuzzy systems without much computation effort. The benefits of the methodology are demonstrated with a case study in the Lake Maracaibo basin, Venezuela. Special core analyses from three early development wells provide the data for the learning task. Core permeability and well‐log data from a fourth well provide the basis for model validation. Numerical simulation results show that the fuzzy system is an improvement over conventional empirical methods in terms of predictive capability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.