Abstract

This study develops a coupled model of chemical clogging and permeability coefficient of geotextile envelope. Based on the distribution characteristics of crystal precipitates on geotextile envelope and their influence on the permeability coefficient, a permeability coefficient model of an actual geotextile envelope that considers the overlapping effect is developed. Then, the densification effects of geosynthetic fiber hypothesis and the filter cake effect hypothesis are proposed to simulate the processes of increasing fiber diameter after crystal precipitation and the accumulation of crystal precipitates on the surface of geotextile envelope. The crystal precipitation module and permeability coefficient module are coupled, and their experimental values are used to confirm the availability of the model. Results indicate the satisfactory performance of the model. In addition, the parameter sensitivity analysis and trend prediction show that the saturation index SI and solution flow rate V are the main factors that affect the chemical clogging and permeability of geotextile envelope. When the solution conditions are not considered, the sensitivity of geotextile envelope parameter df increased with the amount of precipitation in crystal precipitation. When the pores of the geotextile envelope are completely clogged, the permeability coefficient of the geotextile envelope will drop sharply, then decline slowly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.