Abstract

Geothermal projects utilizing supercritical water (≥400 °C) could boost power output tenfold compared to conventional plants. However, these reservoirs commonly occur in crustal areas where rocks are semi-ductile or ductile, impeding large-scale fractures and cracking, and where hydraulic properties are largely unknown. Here, we explore the complex permeability of rocks under supercritical conditions using mechanical data from a gas-based triaxial apparatus, high-resolution synchrotron post-mortem 3D imagery, and finite element modeling. We report a first order control of strain partitioning on permeability. In the brittle regime, strain localizes on permeable faults without necessarily increasing sample apparent permeability. In the semi-ductile regime, distributed strain increases permeability both in deformation bands and the bulk, leading to a more than tenfold permeability increase. This study challenges the belief that the brittle-ductile transition (BDT) marks a cutoff for fluid circulation in the crust, demonstrating that permeability can develop in deforming semi-ductile rocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.