Abstract

There are increasing numbers of exceptions to a central tenet in cryobiology that low-molecular-weight protective solutes such as glycerol must permeate cells in high concentration in order to protect them from freezing injury. To test this supposition, it is necessary to determine the amount of solute that has permeated a cell prior to freezing. The amount in human red cells was estimated from the flux equation ds dt = P γ A [(activity external solute) — (activity internal solute)]. Solving the equation required knowledge of P γ the permeability constant for the solute. Estimates of P γ for glycerol were made in two ways: (i) by measuring the time to 50% hemolysis of human red cells suspended in 1 or 2 m solutions of glycerol that were hypotonic with respect to NaCl, and (ii) by measuring the time required for red cells in 1 or 2 m solutions of glycerol in isotonic saline-buffer to undergo osmotic shock upon tenfold dilution with isotonic saline-buffer. The measurements were made at 0 and 20 °C. The values of P γ were about 2.5 × 10 −4 cm/min at 20 °C and about 0.9 × 10 −4 cm/min at 0 °C. The difference corresponds to an activation energy of 7.2 kcal/mole. These values of P γ are 100 to 600 times higher than those for glycerol permeation in the bovine erythrocyte. The values of P were relatively unaffected by whether calculations were based on classical or irreversible thermodynamics and by the choice of concentration units in the flux equations. Calculations of the kinetics of glycerol entry using these P values showed that the concentration of intracellular glycerol reaches 90% of equilibrium in 1.2 min at 0 °C and in 0.6 min at 20 °C. The osmolal ratio of intracellular glycerol to intracellular nonpermeating solutes reaches 90% of equilibrium in 7 min at 0 °C and in 3.2 min at 20 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call