Abstract
We investigated the permeabilities of lipid bilayers to the neurotoxin methylmercuric chloride (MMC). This mercurial is an efficient collisional quencher of the fluorescence of N-alkyl carbazole derivatives. Quenching of the fluorescence of β-(3-(9-carbazole)-propionyl-L-α-phosphatidylcholine (CPA-PC) in vesicles of dimyristoyl phosphatidylcholine and of dioleoyl phosphatidylcholine reveal rapid diffusion of MMC in the alkyl side chain regions of these bilayers. By a combination of (1) the lipid concentration dependence of the apparent quenching constants, (2) the solubility of MMC in concentrated lipid dispersions and (3) the 270 MHz proton magnetic resonance of methylmercury in the presence of lipid bilayers we conclude that the lipid-water partition coefficient of this mercurial is less than or equal to two. Using the fluorescence quenching and the partitioning data we estimate the diffusion coefficient of MMC in these bilayers to range from 0.13 to 0.31 × 10 −5 cm 2/sec, or 20–47% of its diffusion coefficient in ethanol. These data indicate that lipid bilayers do not pose a significant permeability barrier to the diffusional transport of MMC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.