Abstract

We perform forced-drainage experiments in aqueous foams and compare the results with data available in the literature. We show that all the data can be accurately compared together if the dimensionless permeability of the foam is plotted as a function of liquid fraction. Using this set of coordinates highlights the fact that a large part of the published experimental results corresponds to relatively wet foams (epsilon approximately 0.1). Yet, most of the foam drainage models are based on geometrical considerations only valid for dry foams. We therefore discuss the range of validity of the different models in the literature and their comparison to experimental data. We propose extensions of these models considering the geometry of foam in the relatively wet-foam limit. We eventually show that if the foam geometry is correctly described, forced drainage experiments can be understood using a unique parameter --the Boussinesq number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.