Abstract

We examine permeable flow through porous materials using volcanic pyroclasts with simple pore geometries. Laminar lattice‐Boltzmann (LB) fluid flow simulations through 3‐D synchrotron x‐ray microtomographic images allow us to model fluid flow through anisotropic pumiceous volcanic samples (tube pumice). We find a good correspondence between calculated permeability (using both simple approximations and LB simulations) and maximum laboratory permeability measured parallel to the direction of vesicle elongation in most tube pumice samples. Moreover, this comparison demonstrates that small vesicles control fluid flow through the pore structure of tube pumice, even when large, but isolated, vesicles are present. However, neither simple approximations nor LB models for flow through small tomographic volumes can adequately model permeable flow perpendicular to vesicle elongation or in material with complex geometries. This mismatch illustrates current limitations in both resolution of x‐ray tomography for delicate pumice structures and shows the importance of scale in LB calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.