Abstract

Topology optimization was combined with a 3-D weaving technique to design and fabricate structures with optimized combinations of fluid permeability and mechanical stiffness. Two different microarchitected structures are considered: one is a “standard” weave in which all wires were included, while the other is termed an “optimized” weave as specific wires were removed to maximize the permeability of the resulting porous materials with only a limited reduction in stiffness. Permeability was measured and predicted for both structures that were 3-D woven with either Cu or Ni–20Cr wires. The as-woven wires in the Cu lattices were bonded at contact points using solder or braze while the Ni–20Cr wires were bonded at contact points using pack aluminization. Permeability was measured under laminar flow conditions in all three normal directions for unbonded and bonded samples and in the optimized structure it was found to increase between 200% and 600%, depending on direction, over the standard structures. Permeability was also predicted using finite-element modeling with as-fabricated wires positions that were identified with optical microscopy or X-ray tomography; the measurements and predictions show good agreement. Lastly, the normalized permeability values significantly exceed those found for stochastic, metallic foams and other periodic structures with a material volume fraction of over 30%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call