Abstract
Abstract Permeability estimation has a significant impact on petroleum fields operation and reservoir management. Different methods were proposed to measure this parameter, which some of them are inaccurate, and some others such as core analysis are cost and time consuming. Intelligent techniques are powerful tools to recognize the possible patterns between input and output spaces, which can be applied to predict reservoir parameters. This study proposed a new approach based on multi-gene genetic programming (MGGP) to predict permeability in one of the heterogeneous oil reservoirs in Iran. The MGGP model with artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS) and genetic programming (GP) model were used to predict the permeability and obtained results were compared statistically. The comparison of results showed that the MGGP model can be applied effectively in permeability prediction, which gives low computational time. Furthermore, one equation based on the MGGP model using well log and core experimental data was generated to predict permeability in porous media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.