Abstract
Enhanced Geothermal Systems (EGS) are based on the premise that heat can be extracted from hot dry rocks located at significant depths by circulating fluid through fracture networks in the system. Heated fluid is recovered through production wells and the energy is extracted in a heat exchange chamber. There is much published research on flow through fractures, and many models have been developed to describe an effective permeability of a fracture or a fracture network. In these cases however, the walls of the fracture were modelled as being impermeable. In this paper, we have extended our previous work on fractures with permeable walls, and we introduce a correction factor to the equation that governs fracture permeability. The solution shows that the effective fracture permeability for fractures with permeable walls depends not only on the height of the channel, but also on the wall permeability and the wall Reynolds number of the fluid. We show that our solution reduces to the established solution when the fracture walls become impermeable. We also extend the discussion to cover the effective permeability of a system of fractures with permeable walls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.