Abstract

ABSTRACT The goal of reservoir characterization is to distribute petrophysical properties in 3-D. Porosity, permeability, and saturation values have no intrinsic spatial information and must be linked to a 3-D geologic model to be distributed in space. This link is provided by relating petrophysical properties to rock fabrics. The vertical succession of rock fabrics was shown to be useful in constructing a geologic framework for distributing porosity, permeability, and saturation in 3-D. Permeability is perhaps the most difficult petrophysical property to obtain and image because its calculation from wireline logs requires the estimation of pore-size distribution. In this study of the Arab-D reservoir, rock fabric and interparticle porosity were used to estimate pore-size distribution. Cross-plots of water saturation and porosity, calibrated with rock-fabric descriptions, formed the basis for determining the distribution of rock fabric and pore size from resistivity and porosity logs. Interparticle porosity was obtained from travel-time/porosity, cross-plot relationships. A global porosity-permeability transform that related rock fabric, interparticle porosity, and permeability was the basis for calculating permeability from wireline logs. Calculated permeability values compared well with core permeability. In uncored wells, permeability was summed vertically and the horizontal permeability profile compared with flow-meter data. The results showed good correlation in most wells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call