Abstract

Over the past twenty years, growing technology allowed to treat a wide range of subsurface conditions for construction. When a properly designed cement grout is injected into sand soil, homogeneous grout bulbs are formed which make dense and thus strengthen the surrounding soil. For successful growing, the knowledge of subsurface conditions is important. Ground improvement can be assessed by permeability testing and mercury porosimetry testing. Laboratory experiments were conducted to examine grout injection through Loire sand columns under saturated conditions. These tests were performed in order to highlight the effect of some key factors: cement-to-water ratio, relative density of the granular skeleton on the properties of the grouted sand. Subsequently Mercury Intrusion Porosimetry tests showed that both porosity and its distribution are modified. Besides, the intrinsic permeability was measured by a gas permeability device. Then, an evaluation of intrinsic permeability using the Katz-Thompson equation on these tests is proposed and compared to gas permeability which is still commonly used in civil engineering to measure this intrinsic parameter.

Highlights

Read more

Summary

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.