Abstract

Cryopreservation is the use of very low subzero temperatures to preserve cells and tissues for later use. This is achieved by controlled cooling in the presence of cryoprotectants that moderate the amount of ice formed. Mathematical modeling of the cryopreservation process is a useful tool to investigate the different variables that affect the results of this process. The changing cell volume during cryopreservation can be modeled using cell membrane water and cryoprotectant permeabilities and the osmotically inactive fraction of the intracellular contents. These three cell-specific parameters have been found previously for different cell types under ideal and dilute assumptions, but biological solutions at subzero temperatures are far from ideal and dilute, especially when cryoprotectants are included. In this work, the osmotic virial equation is used to model the changing cell volume under non-ideal assumptions, and the intracellular environment is described using the grouped solute, which consists of all impermeant intracellular solutes grouped together, leading to two additional cell-specific parameters, the second and third osmotic virial coefficients of the grouped solute. Herein, we present a novel fitting method to efficiently determine these five cell-specific parameters by fitting kinetic cell volume data under non-ideal assumptions and report the results of applying this method to obtain the parameters for two cell types: human umbilical vein endothelial cells and H9C2 rat myoblasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call