Abstract

This study focused on developing a hydrophilic hybrid polyvinylidene fluoride (PVDF)-polyethylene glycol (PEG) hollow membrane by incorporating Nano-magnesium oxide (NMO) as a potent antifouling mediator. The Nano-hybrid hollow fibers with varied loading of NMO (0 g; 0.25 g; 0.50 g; 0.75 g and 1.25 g) were spun through phase inversion technique. The resultants Nano-hybrid fibers were characterized and compared based on SEM, EDX, contact angle, surface zeta-potential, permeability flux, fouling resistance and color rejection from palm oil mill effluent (POME). Noticeably, the permeability flux, fouling resistance and color rejection improved with the increase in NMO loading. PVDF-PEG with 0.50 g-NMO loading displayed an outstanding performance with 198.35 L/m2·h, 61.33 L/m2·h and 74.65% of water flux, POME flux and color rejection from POME, respectively. More so, a remarkable fouling resistance were obtained such that the flux recovery, reversible fouling percentage and irreversible fouling percentage remains relatively steady at 90.98%, 61.39% and 7.68%, respectively, even after 3 cycles of continuous filtrations for a total period of 9 h. However, at excess loading of 0.75 and 1.25 g-NMO, deterioration in the flux and fouling resistance was observed. This was due to the agglomeration of nanoparticles within the matrix structure at the excessive loading.

Highlights

  • Owing to the exceptional physical, mechanical and chemical stability of polyvinylidene difluoride (PVDF) polymer, its applications for bio-system/tissue engineering [1], pervaporation [2,3] and separation technology [4,5] have gained a considerable attentions

  • The aforementioned separation process using polyvinylidene fluoride (PVDF) polymeric membrane have been applied on several wastewater, such as palm oil mill effluent [9], dye wastewater generated from textile industry [10], saline-water [11] and endocrine compounds [12]

  • Hybrid PVDF-polyethylene glycol (PEG) hollow fibers blended with NMO at various loading of 0–1.25 g were fabricated using phase inversion technique

Read more

Summary

Introduction

Owing to the exceptional physical, mechanical and chemical stability of polyvinylidene difluoride (PVDF) polymer, its applications for bio-system/tissue engineering [1], pervaporation [2,3] and separation technology [4,5] have gained a considerable attentions. As a result of this flexibility, PVDF polymer is suitable for fabricating polymeric membrane [6]. It has likewise been noted that PVDF membrane requires a relatively low pressure and minimal energy demand during filtration. This feature is most desirable for the microfiltration and ultrafiltration separation processes [8]. The aforementioned separation process using PVDF polymeric membrane have been applied on several wastewater, such as palm oil mill effluent [9], dye wastewater generated from textile industry [10], saline-water [11] and endocrine compounds [12]. Some drawbacks were reported which include continuous diminishing in permeation, low rejection as well as fouling [13]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call