Abstract

BackgroundIndividuals genetically susceptible to malignant hyperthermia (MH) exhibit hypermetabolic reactions when exposed to volatile anaesthetics. Mitochondrial dysfunction has previously been associated with the MH-susceptible (MHS) phenotype in animal models, but evidence of this in human MH is limited. MethodsWe used high resolution respirometry to compare oxygen consumption rates (oxygen flux) between permeabilised human MHS and MH-negative (MHN) skeletal muscle fibres with or without prior exposure to halothane. A substrate-uncoupler-inhibitor titration protocol was used to measure the following components of the electron transport chain under conditions of oxidative phosphorylation (OXPHOS) or after uncoupling the electron transport system (ETS): complex I (CI), complex II (CII), CI+CII and, as a measure of mitochondrial mass, complex IV (CIV). ResultsBaseline comparisons without halothane exposure showed significantly increased mitochondrial mass (CIV, P=0.021) but lower flux control ratios in CI+CII(OXPHOS) and CII(ETS) of MHS mitochondria compared with MHN (P=0.033 and 0.005, respectively) showing that human MHS mitochondria have a functional deficiency. Exposure to halothane triggered a hypermetabolic response in MHS mitochondria, significantly increasing mass-specific oxygen flux in CI(OXPHOS), CI+CII(OXPHOS), CI+CII(ETS), and CII(ETS) (P=0.001–0.012), while the rates in MHN samples were unaltered by halothane exposure. ConclusionsWe present evidence of mitochondrial dysfunction in human MHS skeletal muscle both at baseline and after halothane exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.