Abstract

The development of new strategies to improve the removal of organic pollutants with permanganate (KMnO4) is a hot topic in water treatment. While Mn oxides have been extensively used in Advanced Oxidation Processes through an electron transfer mechanism, the field of KMnO4 activation remains relatively unexplored. Interestingly, this study has discovered that Mn oxides with high oxidation states including γ-MnOOH, α-Mn2O3 and α-MnO2, exhibited excellent performance to degrade phenols and antibiotics in the presence of KMnO4. The MnO4- species initially formed stable complexes with the surface Mn(III/IV) species and showed an increased oxidation potential and electron transfer reactivity, caused by the electron-withdrawing capacity of the Mn species acting as Lewis acids. Conversely, for MnO and γ-Mn3O4 with Mn(II) species, they reacted with KMnO4 to produce cMnO2 with very low activity for phenol degradation. The direct electron transfer mechanism in α-MnO2/KMnO4 system was further confirmed through the inhibiting effect of acetonitrile and the galvanic oxidation process. Moreover, the adaptability and reusability of α-MnO2 in complicated waters indicated its potential for application in water treatment. Overall, the findings shed light on the development of Mn-based catalysts for organic pollutants degradation via KMnO4 activation and understanding of the surface-promoted mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.