Abstract

A permanent-magnet (PM)-assisted synchronous reluctance (PMASR) machine exhibits both high efficiency and high flux-weakening (FW) range. However, the best performance is achieved after a machine design optimization. In industry applications, the design of PMASR machines requires to satisfy an increasing number of limitations. The key points are lamination geometry, material property, and control strategy. This paper analyzes the influence of PM volume (flux level) on the motor performance, although lamination geometry and stack length are kept fixed. Thus, the PM volume inset in the rotor is optimized. The considered PMASR motor is designed for a very high FW speed range. The study is based on a finite-element (FE) analysis. The accuracy of the FE simulations is verified comparing their results with measurements on a prototype. The FE model is then used to study the different cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.