Abstract

Control of permanent magnet synchronous machines (PMSMs) requires rotor position measurement/estimation, as well as the magnet polarity detection for startup of the machine. The rotor position of PMSMs is typically measured using a speed/position sensor (e.g., an encoder), while the magnet polarity is commonly measured using digital hall-effect sensors. Since simplifying the system can help improve reliability and reduce the cost associated with the measurements, the use of low cost analog hall-effect sensors for the estimation of the PM position, and polarity for control of PMSMs drives is evaluated in this paper. Experimental results performed on a 7.5-kW motor confirm that analog hall-effect sensors can replace both speed/position sensors and digital hall-effect sensors while maintaining adequate performance of the drive at a lower cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call