Abstract

In the mid-low speed Maglev train, the levitation force produced by end electromagnets is influenced by the train speed due to the eddy current effect, especially the front-end electromagnets at high speed. In this paper, the eddy current effect of front-end electromagnets is calculated by an analytical method, which is validated by the Finite Element method (FEM). To compensate a decrease of levitation force, two improved structures of end electromagnet modules are designed and compared. One is the permanent magnet compensation structure, designed by inserting a piece of permanent magnet (PM), and called the PM hybrid structure, and the other is an additional electromagnet compensation structure, which adopts five electromagnets, and called the five-coil structure. In terms of comparison, the five-coil structure can not only produce a high enough levitation force, but can also be easily manufactured. Its effectiveness is verified by the prototype application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call