Abstract

Brownian motion allows microscopically dispersed nanoparticles to be stable in ferrofluids, as well as causes magnetization relaxation and prohibits permanent magnetism. Here we decoupled the particle Brownian motion from colloidal stability to achieve a permanent fluidic magnet with high magnetization, flowability and reconfigurability. The key to create such permanent fluidic magnets is to maintain a stable magnetic colloidal fluid by using non-Brownian magnetic particles to self-assemble a three-dimensional oriented and ramified magnetic network structure in the carrier fluid. This structure has high coercivity and permanent magnetization, with long-term magnetization stability. We establish a scaling theory model to decipher the permanent fluid magnet formation criteria and formulate a general assembly guideline. Further, we develop injectable and retrievable permanent-fluidic-magnet-based liquid bioelectronics for highly sensitive, self-powered wireless cardiovascular monitoring. Overall, our findings highlight the potential of permanent fluidic magnets as an ultrasoft material for liquid devices and systems, from bioelectronics to robotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.