Abstract

The ground deformation rate is an important index for evaluating the stability and degradation of permafrost. Due to limited accessibility, in-situ measurement of the ground deformation of permafrost areas on the Tibetan Plateau is a challenge. Thus, the technique of time-series interferometric synthetic aperture radar (InSAR) is often adopted for measuring the ground deformation rate of the permafrost area, the effectiveness of which is, however, degraded in areas with geometric distortions in synthetic aperture radar (SAR) images. In this study, a method that integrates InSAR and the random forest method is proposed for an improved permafrost stability mapping on the Tibetan Plateau; to demonstrate the application of the proposed method, the permafrost stability mapping in a small area located in the central region of the Tibetan Plateau is studied. First, the ground deformation rate in the concerned area is studied with InSAR, in which 67 Sentinel-1 scenes taken in the period from 2014 to 2020 are collected and analyzed. Second, the relationship between the environmental factors (i.e., topography, land cover, land surface temperature, and distance to road) and the permafrost stability is mapped with the random forest method based on the high-quality data extracted from the initial InSAR analysis. Third, the permafrost stability in the whole study area is mapped with the trained random forest model, and the issue of data scarcity in areas where the terrain visibility of SAR images is poor or InSAR results are not available in permafrost stability mapping can be overcome. Comparative analyses demonstrate that the integration of the InSAR and the random forest method yields a more effective permafrost stability mapping compared with the sole application of InSAR analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call