Abstract
ABSTRACTComputer modeling of sporadic and isolated patches of mountain permafrost distribution is difficult to implement without overestimating it. The main challenge is to determine the very areas where the criteria for permafrost maintenance are met. This paper aims to modeling the permafrost distribution in the Southern Carpathians (SC), a typical marginal periglacial mountain range. For this purpose, a collection of 883 bottom temperature of late winter snow cover (BTS) points was used as a proxy for permafrost presence or absence in order to train several machine learning models. The performances of each model were evaluated with AUC with varying between 0.99 for Maxent and 0.74 for K‐nearest neighbors and most models (five) exhibiting values between 0.82 and 0.86. Other tests such as confusion matrices, sensitivity analyses, data shuffling, and data size reduction tests indicated that Maxent, AdaBoost, and support vector machine offered the best results while logistic regression, neural network, and gradient boosting exhibited rather poor permafrost distributions. The final ensemble median model indicated a total permafrost area of 19.2 km2 occupying 1%–9% of the alpine area of the studied massifs. NDVI proved crucial for permafrost prediction because it allows delimiting the debris surfaces where permafrost is probable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.