Abstract

Protein kinase RNA-like Endoplasmic Reticulum Kinase (PERK) is an endoplasmic reticulum stress sensor that possesses pro-survival capability and contributes to cell homeostasis and survival. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) has been recognized as a stem cell marker in intestinal epithelial cells. To determine whether PERK modulates the proliferation of intestinal stem cells, we investigated the effects of PERK knock-down on intestinal Lgr5-positive stem cells in mice. Lgr5-EGFP knock-in mice were fed with lentivirus-PERK shRNA twice a day for three days. Isolated intestinal Lgr5-positive stem cells were treated with lentivirus-PERK shRNA. The number of Lgr5-positive cells, the proliferation and apoptotic indices, several biomarkers for proliferation and differentiation, and Akt expression in intestinal stem cells were detected in vivo, in vitro and in two intestinal epithelial injury models caused by radiotherapy and sepsis. PERK knock-down could significantly diminish the number and proliferation of Lgr5-positive cells, induce the low expression of several proliferation markers and the high expression of several differentiation markers in Lgr5-positive cells, enhance the apoptotic Lgr5-positive cells, and reduce the Akt expression in intestinal Lgr5-positive stem cells. Similar results were observed in radiotherapy- and sepsis-induced intestinal injuries. Moreover, PERK inhibition markedly decreased the survival of mice in response to radiation and sepsis. These results suggest a critical role for PERK in the proliferation and survival of intestinal stem cells in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.