Abstract
BackgroundDrug-eluting stents impair post-angioplasty re-endothelialization thus compromising restenosis prevention while heightening thrombotic risks. We recently found that inhibition of protein kinase RNA-like endoplasmic reticulum kinase (PERK) effectively mitigated both restenosis and thrombosis in rodent models. This motivated us to determine how PERK inhibition impacts re-endothelialization. MethodsRe-endothelialization was evaluated in endothelial-denuded rat carotid arteries after balloon angioplasty and periadventitial administration of PERK inhibitor in a hydrogel. To study whether PERK in smooth muscle cells (SMCs) regulates re-endothelialization by paracrinally influencing endothelial cells (ECs), denuded arteries exposing SMCs were lentiviral-infected to silence PERK; in vitro, the extracellular vesicles isolated from the medium of PDGF-activated, PERK-upregulating human primary SMCs were transferred to human primary ECs. ResultsTreatment with PERK inhibitor versus vehicle control accelerated re-endothelialization in denuded arteries. PERK-specific silencing in the denuded arterial wall (mainly SMCs) also enhanced re-endothelialization compared to scrambled shRNA control. In vitro, while medium transfer from PDGF-activated SMCs impaired EC viability and increased the mRNA levels of dysfunctional EC markers, either PERK inhibition or silencing in donor SMCs mitigated these EC changes. Furthermore, CXCL10, a paracrine cytokine detrimental to ECs, was increased by PDGF activation and decreased after PERK inhibition or silencing in SMCs. ConclusionsAttenuating PERK activity pharmacologically or genetically provides an approach to accelerating post-angioplasty re-endothelialization in rats. The mechanism may involve paracrine factors regulated by PERK in SMCs that impact neighboring ECs. This study rationalizes future development of PERK-targeted endothelium-friendly vascular interventions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.