Abstract

Reduced signal on fluorodeoxyglucose-positron emission tomography (FDG-PET) is a valid proxy for neurodegeneration in Alzheimer's disease (AD). Perivascular space (PVS) is believed to be associated with AD pathology and cognitive decline. This study aimed to investigate the associations of PVS with FDG-PET and cognitive performance based on the burden of amyloid pathology. We used magnetic resonance imaging (MRI) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). MRI-visible PVS in basal ganglia (BG) and centrum semi-oval (CSO) were visually classified as: none/mild, moderate or frequent/severe. The association of PVS with brain FDG-PET was explored based on the burden of amyloid pathology, where a cerebrospinal fluid (CSF) t-tau/Aβ42 with the ratio≥0.27 was defined as high amyloid pathology. Moreover, the relationships between PVS and cognitive performance variables (ADNI-MEM and ADNI-EF) were studied. For participants with higher tau/Aβ42 ratio, CSO-PVS severity was independently associated with lower FDG-PET. There were significant interaction effects between moderate or frequent/severe CSO-PVS and time on FDG decline in people with high amyloid pathology. The interaction between CSO-PVS and time (follow-up) was consistently associated with ADNI-MEM and ADNI-EF decline in individuals with high amyloid pathology. The study established the differential utility of PVS in BG and CSO for predicting brain metabolism. These findings suggest that CSO-PVS serves as a contributing factor to brain metabolism and cognitive decline associated with amyloid pathology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call