Abstract

Traumatic brain injury (TBI) causes cerebral vascular dysfunction. Most have assumed that it was the result of endothelial and/or smooth muscle alteration. No consideration, however, has been given to the possibility that the forces of injury may also damage the perivascular nerve network, thereby contributing to the observed abnormalities. To test this premise, we subjected rats to impact acceleration. At 6 h, 24 h and 7 days post-TBI, cerebral basal arteries were removed and processed with antibody targeting protein gene product 9.5 (PGP-9.5), with parallel assessments of 5-hydroxytryptamine (5-HT) accumulation in the perivascular nerves. Additionally, Fluoro-Jade was also used as a marker of axonal degeneration. The perivascular nerve network revealed no abnormality in sham animals. However, by 6 h post injury, Fluoro-Jade reactivity appeared in the perivascular regions, with the number of fibers increasing with time. By 24 h post injury, a significant reduction in the perivascular 5-HT accumulation occurred, together with a reduction in PGP-9.5 fiber staining. At 7 days, a recovery of the PGP-9.5 immunoreactivity occurred, however, it did not reach a control-like distribution. These studies suggest that neurogenic damage occurs following TBI and may be a contributor to some of the associated vascular abnormalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call