Abstract

The National Lung Screening Trial (NLST) demonstrated that screening with low-dose computed tomography (LDCT) is associated with a 20% reduction in lung cancer mortality. One potential limitation of LDCT screening is overdiagnosis of slow growing and indolent cancers. In this study, peritumoral and intratumoral radiomics was used to identify a vulnerable subset of lung patients associated with poor survival outcomes. Incident lung cancer patients from the NLST were split into training and test cohorts and an external cohort of non-screen detected adenocarcinomas was used for further validation. After removing redundant and non-reproducible radiomics features, backward elimination analyses identified a single model which was subjected to Classification and Regression Tree to stratify patients into three risk-groups based on two radiomics features (NGTDM Busyness and Statistical Root Mean Square [RMS]). The final model was validated in the test cohort and the cohort of non-screen detected adenocarcinomas. Using a radio-genomics dataset, Statistical RMS was significantly associated with FOXF2 gene by both correlation and two-group analyses. Our rigorous approach generated a novel radiomics model that identified a vulnerable high-risk group of early stage patients associated with poor outcomes. These patients may require aggressive follow-up and/or adjuvant therapy to mitigate their poor outcomes.

Highlights

  • The National Lung Screening Trial (NLST) demonstrated that screening with low-dose computed tomography (LDCT) is associated with a 20% reduction in lung cancer mortality

  • The National Lung Screening Trial (NLST) demonstrated that annual screening with low-dose helical computed tomography (LDCT) compared to chest radiography is associated with a 20% relative reduction in lung cancer mortality among high-risk i­ndividuals[1]

  • LDCT screening can lead to overdiagnosis and overtreatment of slow growing, indolent cancers that may pose no threat if left ­untreated[2,3]

Read more

Summary

Introduction

The National Lung Screening Trial (NLST) demonstrated that screening with low-dose computed tomography (LDCT) is associated with a 20% reduction in lung cancer mortality. Peritumoral and intratumoral radiomics was used to identify a vulnerable subset of lung patients associated with poor survival outcomes. Our rigorous approach generated a novel radiomics model that identified a vulnerable high-risk group of early stage patients associated with poor outcomes. These patients may require aggressive follow-up and/or adjuvant therapy to mitigate their poor outcomes. The National Lung Screening Trial (NLST) demonstrated that annual screening with low-dose helical computed tomography (LDCT) compared to chest radiography is associated with a 20% relative reduction in lung cancer mortality among high-risk i­ndividuals[1]. There have been limited efforts to use radiomics to predict tumor behavior and patient outcomes in the lung cancer screening setting

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call