Abstract

Solutions were formulated to examine, independently, the roles of osmolality and glucose in the reduction of viability and inhibition of phagocyte function by dextrose-containing peritoneal dialysis fluids. The exposure of neutrophils (polymorphonuclear leukocytes) to test fluids containing > or = 2.7% (wt/vol) glucose resulted in significant cytotoxicity as assessed by the release of lactate dehydrogenase above control values (7.12 +/- 2.65%). At the highest concentration of glucose (4.5%), lactate dehydrogenase release was 15.83 +/- 0.49% (P < 0.05). These effects were directly related to the presence of D-glucose in the test fluids. In contrast, phagocytosis and the release of leukotriene B4 from PMN stimulated with serum-treated zymosan were significantly inhibited in an osmolality-, but not glucose-, dependent manner. The inhibition of tumor necrosis factor alpha and interleukin-6 release from mononuclear leukocytes was inhibited by a combination of osmolality and monosaccharide concentration. Under the same conditions, PMN respiratory burst activation remained unaffected irrespective of glucose concentration or fluid osmolality. These data indicate that, in addition to the low pH of peritoneal dialysis fluid and its high lactate concentration, its glucose content (either directly or as a consequence of the resulting hyperosmolality of the fluid) inhibits cell functional parameters. These findings suggest clinically significant inhibition of host defense mechanisms because, in high-glucose dialysis fluids, osmolality does not reach physiologic values, even during extended intraperitoneal dwell periods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.