Abstract

The problem of peristaltic transport of a non-Newtonian (power-law) fluid in uniform and non-uniform two-dimensional channels has been investigated under zero Reynolds number with long wavelength approximation. A comparison of the results with those for a Newtonian fluid model shows that the magnitude of pressure rise, under a given set of conditions, is smaller in the case of the non-Newtonian fluid (power-law indexn < 1) at zero flow rate. Further, the pressure rise is smaller asn decreases from 1 at zero flow rate, is independent ofn at a certain value of flow rate and becomes greater if flow rate increases further. Also, at a given flow rate, an increase in wavelength leads to a decrease in pressure rise and increase in the influence of non-Newtonian behaviour. Pressure rise in the case of non-uniform geometry, is found to be much smaller than the corresponding value in the case of uniform geometry. Finally, the analysis is applied and compared with observed flow rates in the ductus efferentes of the male reproductive tract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.