Abstract

The peristaltic transport of a Casson fluid in a two-dimensional asymmetric channel is studied under long- wavelength and low-Reynolds number assumption. The asymmetry in the channel is created by considering the peristaltic waves imposed on the boundary walls to possess different amplitude and phase. The analysis of the flow is carried out in a wave frame of reference moving with the velocity of the wave. Due to the asymmetry in the channel two yield planes exist and they are calculated by solving the transcendental equation in terms of the core width. In an asymmetric channel the yield planes are skewed towards the boundary with higher amplitude or a phase difference in relation to the other boundary. While in a symmetric channel the yield planes are located symmetrically on either side of the axis of the channel. The phenomena of trapping and reflux have been discussed in the symmetric case of the channel. It is noticed that trapping of fluid occurs and the trapping zone extends for an increase in the time average flux. It is found that reflux occurs for higher values of amplitude of the peristaltic wave and the reflux zone extends for increased amplitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.