Abstract

The proposed mathematical model is based upon the peristaltic flow of an electrical conducting nanofluid within an asymmetric microchannel. The flow takes place under the action of dissipative heat energy due to the occurrence of the magnetic field that is basically known as Joule heating and radiative heat proposed as thermal radiation along with the additional heat source. Moreover, the impact of upper/lower wall zeta potential and the expression for the electric potential is presented using the Poisson Boltzmann equation and Debey length approximation. The well-known numerical practice is used for distorted governing equations with appropriate boundary conditions. Further, computation of the pressure gradient is obtained for the associated physical parameters. The graphical illustration shows the characteristics of the pertinent parameters on the flow problem and the tabular result represents the simulated values for the rate coefficients. In the significant examination, the study reveals that the mobility parameter due to the occurrence of the electric field vis-à-vis time parameter encourages the velocity distribution within the center of the channel furthermore significant retardation occurs near the wall region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call