Abstract

Nanofluids have attracted many scientists due to their remarkable thermophysical properties. Small percentage of nanoparticles when added to conventional fluid significantly enhances the heat transfer features. Sustainability and efficiency of nanomaterials have key role in the advancement of nanotechnology. This article analyzes the Hall, Ohmic heating and velocity slip effects on the peristalsis of nanofluid. Convective boundary conditions and heat generation/absorption are considered to facilitate the heat transfer characteristics. Governing equations for the peristaltic flow through a curved channel are derived in curvilinear coordinates. The equations are numerically solved under the assumption of long wavelength and small Reynold number. It has been observed that nanofluid enhances the heat transfer rate and reduces the fluid temperature. Hartman number and Hall parameter show reverse behavior in fluid motion and heat transfer characteristics. In the presence of velocity slip, the pressure gradient rapidly decreases and dominant effect is seen in narrow portion of channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call