Abstract

Excess TNF is centrally involved in the pathogenesis of a variety of neuroinflammatory disorders, including Alzheimer's disease, other forms of dementia, intervertebral disc-related pain, and related disorders. TNF causes neuronal dysfunction, regulates synaptic mechanisms, and mediates amyloid-induced disruption of molecular mechanisms involved in memory. Perispinal administration of etanercept, a potent anti-TNF fusion protein, is a treatment modality whose rapid clinical effects may be related to modulation of these TNF-related mechanisms, particularly the role of TNF as a gliotransmitter capable of regulating synaptic transmission. This approach utilizes therapeutic delivery of etanercept across the dura via the cerebrospinal venous system, a confluence of the venous plexuses of the spine and the brain, in which flow is bi-directional owing to the absence of venous valves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.