Abstract

It has recently been suggested that the different cortices of the medial temporal lobe support a mixture of object and spatial processing functions, challenging the anterior model that emphasized a strict functional differentiation between regions. However, for some structures, the perirhinal cortex (Prh) for example, a number of studies using lesion methods have shown a profound deficit exclusively in tasks involving object learning but not allocentric spatial learning. It may be that the learning paradigms used in previous studies have not been sensitive enough to detect a possible allocentric deficit in Prh-lesioned animals. To examine whether Prh lesions critically affect allocentric spatial learning, experimental and control rats were trained in two doubly marked navigation tasks. In experiment 1, the use of either one of two different memory systems, allocentric versus egocentric, made it possible to locate the goal arm in a four-arm radial maze. In experiment 2, rats had to choose between an allocentric versus a S-R/habit strategy, both of which predicted the location of the goal arm. Results showed that both experimental and control animals learned both navigation tasks well, reaching the same level of performance at the end of training. However, a probe test performed 1 day after the learning ended revealed that Prh-damaged animals learned both tasks predominantly using a non-allocentric strategy. Specifically, in lesioned subjects the percentage of egocentric correct responses (experiment 1) and the percentage of habit-based correct responses (experiment 2) was significantly higher than in the control rats. On the other hand, in both experiments, control rats in the probe test presented a significantly higher number of allocentric correct responses than the lesioned subjects. These results clearly suggest that Prh is normally needed for using allocentric strategies in order to solve a navigation problem. © 2017 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.