Abstract

Periprosthetic joint infection (PJI) is a common complication after total joint arthroplasty leading to severe morbidity and mortality. With an aging population and increasing prevalence of total joint replacement procedures, the burden of PJI will be felt not only by individual patients, but in increased healthcare costs. Current treatment of PJI is inadequate resulting in incredibly high failure rates. This is believed to be largely mediated by the presence of bacterial biofilms. These polymicrobial bacterial colonies form within secreted extracellular matrices, adhering to the implant surface and local tissue. The biofilm architecture is believed to play a complex and critical role in a variety of bacterial processes including nutrient supplementation, metabolism, waste management, and antibiotic and immune resistance. The establishment of these biofilms relies heavily on the quorum sensing communication systems utilized by bacteria. Early stage research into disrupting bacterial communication by targeting quorum sensing show promise for future clinical applications. However, prevention of the biofilm formation via early forced induction of the biofilm forming process remains yet unexplored. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2331-2339, 2018.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.