Abstract

Periplasmic binding protein-dependent transport systems are multicomponent, consisting of several inner membrane-associated proteins and a periplasmic component. The membrane-associated components of different systems are related in organization and function suggesting that, despite different substrate specificities, each transport system functions by a common mechanism. Current understanding of these components is reviewed. The nature of energy coupling to periplasmic transport systems has long been debated. Recent data now demonstrate that ATP hydrolysis is the primary source of energy for transport. The ATP-binding transport components are the best characterized of a family of closely related ATP-binding proteins believed to couple ATP hydrolysis to a variety of different biological processes. Intriguingly, systems closely related to periplasmic binding protein-dependent transport systems have recently been identified in several Gram-positive organisms (which lack a periplasm) and in eukaryotic cells. This class of transport system appears to be widespread in nature, serving a variety of important and diverse functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.