Abstract

Dendritic cells (DCs) can induce peripheral immune tolerance that prevents autoimmune responses. Ag presentation by peripheral DCs under steady-state conditions leads to a conversion of some peripheral CD4(+) T cells into regulatory T cells (Tregs) that require homeodomain-only protein (Hopx) to mediate T cell unresponsiveness. However, the roles of these peripheral Tregs (pTregs) in averting autoimmune responses, as well as immunological mechanisms of Hopx, remain unknown. We report that Hopx(+) pTregs converted by DCs from Hopx(-) T cells are indispensible to sustain tolerance that prevents autoimmune responses directed at self-Ags during experimental acute encephalomyelitis. Our studies further reveal that Hopx inhibits intrinsic IL-2 expression in pTregs after antigenic rechallenge. In the absence of Hopx, increased levels of IL-2 lead to death and decreased numbers of pTregs. Therefore, formation of Hopx(+) pTregs represents a crucial pathway of sustained tolerance induced by peripheral DCs, and the maintenance of such pTregs and tolerance requires functions of Hopx to block intrinsic IL-2 production in pTregs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call