Abstract
We identify and characterize unital completely positive (UCP) maps on finite dimensional C⁎-algebras for which the Choi-Effros product extended to the space generated by peripheral eigenvectors matches with the original product. We analyze a decomposition of general UCP maps in finite dimensions into persistent and transient parts. It is shown that UCP maps on finite dimensional C⁎-algebras with spectrum contained in the unit circle are ⁎-automorphisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.