Abstract

This study proposes a custom-built aberrometer that measures peripheral defocus to evaluate myopia progression in the human eye. This advanced device can measure visual fields in both horizontal (up to 40°) and vertical (up to 30°) orientations. It incorporates a novel fixation target that is meticulously designed using an optical simulation software. Notably, each angular point of this novel fixation target differs considerably from the conventional fixation target. To mitigate the effects of the optical variations introduced by spectacles and the subject’s vision, we incorporated a position-variable lens positioned in front of the eye. This lens compensates for these variations, enhancing the precision of the measurements. To evaluate the performance of the proposed aberrometer, we conducted experiments under three distinct conditions: first, with the naked eye; second, while wearing spectacles; and third, while wearing a multifocal lens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.