Abstract

The rates of inhibition of mouse acetylcholinesterase (AChE; EC 3.1.1.7) by paraoxon, haloxon, DDVP and enantiomers of neutral alkyl methylphosphonyl thioates and cationic alkyl methylphosphonyl thiocholines were measured in the presence and absence of AChE peripheral site inhibitors: gallamine, d-tubocurarine, propidium, atropine and derivatives of coumarin. All ligands, except the coumarins, at submillimolar concentrations enhanced the rates of inhibition by neutral organophosphates, whereas inhibition rates by cationic organophosphates were decreased. When peripheral site ligand concentrations extended to millimolar concentrations the extent of the enhancement decreased, creating a well-shaped activation profile. Analysis of inhibition by DDVP revealed that peripheral site inhibitors increase the second-order reaction rates by increasing maximal rates of phosphorylation. These observations suggest that peripheral site ligands are capable of allosterically affecting the conformation of residues in the choline binding site of AChE, thus optimizing the position of the leaving group of uncharged organophosphates during the inhibition reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.